skip to main content


Search for: All records

Creators/Authors contains: "Wang, Robert Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 14, 2024
  2. Gallium-based liquid metals (LMs) are suitable for many potential applications due to their unique combination of metallic and liquid properties. However, due to their high surface tension and low viscosity, LMs are challenging to apply to substrates in useful shapes, such as dots, wires, and films. These issues are mitigated by mixing the LMs in air with other materials, such as mixing with solid particles to form LM solid pastes or mixing with gases to form LM foams. Underlying these deceivingly simple mixing processes are complex and highly intertwined microscale mechanisms. Air microbubbles are inevitably incorporated while making LM pastes, making them partly foams. On the other hand, for foaming of the LM to occur, a critical volume content of solid particles must be internalized first. Consequently, both LM pastes and foams are multiphase composites containing solid and fluid microcomponents. Here, we systematically study the impact of the mixing procedure, solid particle size, and volume fraction (SiO2) on the air content of the multiphase LM composites. We demonstrate that decreasing the particle size and increasing their volume fraction substantially decrease the composite density (i.e., increases air entrapment). The foaming process can also be enhanced with the use of high-speed mechanical mixing, although leading to the formation of a more disordered internal structure. In contrast, manual mixing with larger microparticles can promote the formation of more paste-like composites with minimal air content. We explain the microscopic mechanisms underlying these trends by correlating macroscopic measurements with cross-sectional electron microscopy of the internal structure. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  3. null (Ed.)
    Gallium based liquid metals (LM) have prospective biomedical, stretchable electronics, soft robotics, and energy storage applications, and are being widely adopted as thermal interface materials. The danger of gallium corroding most metals used in microelectronics requires the cumbersome addition of “barrier” layers or LM break-up into droplets within an inert matrix such as silicone oil. Such LM-in-oil emulsions are stabilized by native oxide on the droplets but have decreased thermal performance. Here we show that mixing of the silicone oil into an LM-air foam yields emulsions with inverted phases. We investigate the stability of these oil-in-LM emulsions through a range of processing times and oil viscosities, and characterize the impact of these parameters on the materials’ structure and thermal property relationships. We demonstrate that the emulsion with 40 vol% of 10 cSt silicone oil provides a unique thermal management material with a 10 W m −1 K −1 thermal conductivity and an exterior lubricant thin film that completely prevents corrosion of contacting aluminum. 
    more » « less
  4. Abstract

    We report the synthesis of a soluble precursor that transforms into crystalline SnSe at 200 °C. This transformation temperature is significantly lower than the 270–350 °C range of previously reported tin selenide precursors. This precursor is synthesized by reacting tin with dimethyl diselenide and we identify the precursor as tin(IV) methylselenolate using a combination of mass spectrometry, Raman spectroscopy, and nuclear magnetic resonance spectroscopy. We then chemically treat PbSe colloidal nanocrystals with this precursor and subject them to mild annealing. We characterize the chemical and structural changes during this processing using infrared spectroscopy, aberration‐corrected scanning transmission electron microscopy, and X‐ray photoelectron spectroscopy. These characterization studies indicate the successful formation of a SnSe‐like material that fills the interstitial space between the PbSe nanocrystal cores. We find that the electrical conductivity of these nanocrystal films is comparable to other excellent treatments used to improve charge transport. This excellent charge transport demonstrates the utility of tin(IV) methylselenolate as a conductive “glue” between nanocrystals.

     
    more » « less
  5. We create precursors for PbTe, PbSe, SnTe, and SnSe by reacting Pb or Sn with diphenyl dichalcogenides in a variety of different solvents. We then deposit PbSe x Te 1−x thin films using these precursors and measure their thermoelectric properties. Introducing Na-dopants into the films allows the thermoelectric properties to be varied. 
    more » « less